If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+60x+200=0
a = 3; b = 60; c = +200;
Δ = b2-4ac
Δ = 602-4·3·200
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-20\sqrt{3}}{2*3}=\frac{-60-20\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+20\sqrt{3}}{2*3}=\frac{-60+20\sqrt{3}}{6} $
| 2x+4=2.8x | | x+x+x=1x1x1x1x1x1 | | Y-0.9x=0.5 | | 5^1-7x=4^x | | 11x-32=189 | | 0.70x=0.60x+50 | | 8.25x+65808=19.50x+22788 | | 0.19x=0.14x+21 | | 6x-6=1/2(8x-20) | | 46+(-2k)k=23 | | -w+8.5w=5.3 | | 3x+50+30=180 | | 5r=3r-10 | | 8=3.3x | | n-12+10=23 | | n+13+10=49 | | 23+n=47 | | n-34=12 | | r+3=17.08 | | -9=0.7x | | 42=12v-6v | | 25=5u.u=5 | | Y2-24y-48=0 | | 8v-3v+5=30 | | (4x)(7x)=0 | | 9^2+r^2=(3+r)(3+r) | | 20/62=17/x | | 3x+13=(2x+1) | | 9^2+r^2=(3+r^2) | | 11x+16=43 | | 2x+2.4x=42 | | 2x+3.4x=42 |